$y = a + b \cdot x \Rightarrow b = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\Delta y}{\Delta x}$					$\frac{0}{0} \frac{\infty}{\infty} 0 \cdot \infty \infty - \infty 0^0 1^\infty \infty^0$			
$0 \cdot const = 0$	$\frac{const}{\infty} = 0$	$\frac{const}{\infty} = 0 const^{\infty} = \infty const \pm \infty = \pm \infty$						
	con	$st + \infty =$	$=\infty$ cons	$t - \infty = -\infty$	$const^{\infty}$	= ∞		
r > 0		0	1	2	h a	+h		χ^a and a b
$y = a^x, a > 0$		$x^0 = $	1	χ^a .	$x^{\mathrm{b}} = x^{\mathrm{a}}$			$\frac{1}{x^{b}} = x^{a-b}$
$(x^{a})^{b} = x^{a \cdot b}$			$x^{\frac{a}{b}} = ($	$\sqrt[b]{x}^{a} = \sqrt[b]{x^{a}}$	$x^{-a} = \frac{1}{x^{a}}$			$a^{a} = \frac{1}{x^{a}}$
$y = \log_a(x), a > 0 \text{ i } a \neq 1$	x > 0		$\log_a(x) =$	$y \Leftrightarrow x = a^y$	$x \Leftrightarrow x = a^y \qquad \log_a(x)$		$(x \cdot y) = l$	$og_a(x) + log_a(y)$
$\log_{a}\left(\frac{x}{y}\right) = \log_{a}(x) - \log_{a}(y)$	$g_a(y)$ $\log_a[(x)^n] = n \cdot \log_a(x)$) $\log_a(x)$	$\log_{a}(x) = \frac{\log_{b}(x)}{\log_{b}(a)}$		log log	$g_e(x) = \ln(x)$ $_{10}(x) = \log(x)$	
	n n							
$a_1 + a_2 + a_3 + \dots + a_n =$	$\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} a_i$	a_i	n! = 2	$1 \cdot 2 \cdot 3 \cdot \dots (n -$	- 1) · n		$\binom{n}{k} =$	$\frac{n!}{k! \cdot (n-k)!}$
$(x+y)^n = \binom{n}{0} \cdot x^n \cdot y^0$	$(n) + \binom{n}{1} \cdot x$	$n-1 \cdot y^1$	$+\binom{n}{2} \cdot x^{n}$	$x^{n-2} \cdot y^2 + \dots +$	$\binom{n}{n-1}$	$\cdot x^{n-(n-1)}$	$(y^{n-1} + y^{n-1}) + (y^{n-1}) + (y^{n-$	$\binom{n}{n} \cdot x^{n-n} \cdot y^n$
			1.0					
$p.w.s[a;b] = \frac{f(b) - f(a)}{b - a} = \frac{\Delta f}{\Delta x}$			$f'(a) = \frac{df}{dx} = \lim_{b \to a} \left(\frac{f(b) - f(a)}{b - a} \right)$			$f'(a) = \lim_{\Delta x \to 0} \left(\frac{f(a + \Delta x) - f(a)}{\Delta x} \right)$		
$f(x) = \mathbf{a} \cdot g(x) \qquad \qquad f(x)$			$f(x) = g(x) \pm h(x) \qquad \qquad h(x) = f(x) \cdot g(x) \\ \Downarrow \qquad \qquad \Downarrow$					
$f'(x) = \mathbf{a} \cdot g'(x) \qquad \qquad f'(x) = g$			$g'(x) \pm h'(x)$	$h'(x) \pm h'(x)$ $h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$				
$h(x) = \frac{f(x)}{g(x)} \Rightarrow h'(x) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$				f($f(x) = z(w(x)) \Rightarrow f'(x) = z'(w) \cdot w'(x)$			
$(x^{n})' = n \cdot x^{n-1}$ $(a^{x})' = a$	$a^x \cdot \ln(a)$ $(e^x)' = e^x$			$[\log_a(x)]'$	$[\log_a(x)]' = \frac{1}{x} \cdot \log_a(e) = \frac{1}{x \cdot \ln(a)} \qquad [\ln(x)]$			$[\ln(x)]' = \frac{1}{x}$
(const)' = 0 $[cos(x)]'$			$=-\sin(x)$ $[\sin(x)]' = \cos(x)$					
$[\operatorname{tg}(x)]' = \frac{1}{\cos^2(x)}$					$[\operatorname{ctg}(x)]' = -\frac{1}{\sin^2(x)}$			
$\operatorname{grad} f(x) = \frac{\mathrm{d}f}{\mathrm{d}x} \cdot \hat{x}$ $\operatorname{grad} f(x, y, z) = \frac{\partial f}{\partial x} \cdot \hat{x} + \frac{\partial f}{\partial y} \cdot$			$\hat{y} + \frac{\partial f}{\partial z} \cdot \hat{z}$ $\frac{\partial f(x, y)}{\partial x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y) - f(x, y)}{\Delta x}$					
$\Delta F = \pm \sum_{i=1}^{m} \left \frac{\partial f}{\partial A_i} \right \cdot \Delta A_i \qquad A_i$	$\Delta f = f' +$	$\Delta x = \Big $	$\left \frac{\mathrm{d}f}{\mathrm{d}x}\right \cdot \Delta x$	$y = \mathbf{a} \cdot x + \mathbf{b}$	a =	$\lim_{x\to\infty} \left[\frac{f(x)}{x}\right]$	<u>()</u>] b	$=\lim_{x\to\infty}[f(x)-\mathbf{a}\cdot x]$
$\mathrm{d}y = y' \cdot \mathrm{d}x$	$\mathrm{d}y = y' \cdot \mathrm{d}x \qquad \qquad [f'(x)]'$]' = f''(x)			$\left[f^{(n)}(x)\right]'$	$=f^{(n+1)}(x)$
$f(x) = f(a) + \sum_{i=1}^{\infty} \frac{f^{(i)}(a)}{i!} \cdot (x-a)^{i}$				$f(x) = f(0) + \sum_{i=1}^{\infty} \frac{f^{(i)}(0)}{i!} \cdot x^{i}$				
$v(t) = \frac{\mathrm{d}x}{\mathrm{d}t}$	$a(t) = \frac{d}{dt}$	$a(t) = \frac{\mathrm{d}v}{\mathrm{d}t} \qquad F(t)$			$F(x) = \frac{\mathrm{d}W}{\mathrm{d}x} \qquad E$		$E(x) = -\frac{\mathrm{d}V}{\mathrm{d}x}$	
$\text{Jeżeli}\lim_{x \to x_0} f(x) = 0 \text{ oraz } \lim_{x \to x_0} g(x) = 0 \text{ lub } \lim_{x \to x_0} f(x) = \infty \text{ oraz } \lim_{x \to x_0} g(x) = \infty, \text{ to } \lim_{x \to x_0} \left[\frac{f(x)}{g(x)} \right] = \lim_{x \to x_0} \left[\frac{f'(x)}{g'(x)} \right]$								

Strona **2**

$F(x) = \int f(x) \mathrm{d}x \Leftrightarrow F'(x)$	= f(x)	$\int c \cdot f(x) \mathrm{d}x = c \cdot$	$\int f(x)\mathrm{d}x$	$\int [f(x) + g(x)]$	$\mathrm{d}x = \int f(x)\mathrm{d}x + \int g(x)\mathrm{d}x$	
$\int f(x) \cdot g'(x) \cdot \mathrm{d}x =$	$f(x) \cdot g(x)$	$\int u \cdot \mathrm{d}v = u \cdot v - \int v \cdot \mathrm{d}u$				
$\int x^{n} dx = \frac{1}{n+1} \cdot x^{n+1} + C$	$\int x^{n} dx = \frac{1}{n+1} \cdot x^{n+1} + C$ $\int x^{-1} dx = \ln x + C$			$\int a^{x} dx = \frac{a^{x}}{\ln(a)} + C \qquad \qquad \int e^{x} dx = e^{x} + C$		
$\int \ln(x) \mathrm{d}x = x$	x + C	$\int \sin(x) \mathrm{d}x = -\cos(x) + C$				
$\int \cos(x) \mathrm{d}x$	+ C	$\int \frac{1}{\cos^2(x)} \mathrm{d}x = \mathrm{tg}(x) + \mathrm{C}$				
$\int_{a}^{b} f(x) \mathrm{d}x = F(x)$	- <i>F</i> (a)	$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$				

$i^{2} = -1 \Rightarrow \sqrt{-1} = i$ Dla $z_{1} = a_{1} + i \cdot b_{1}$ $z_{2} = a_{2} + i \cdot b_{2}$ $z_{1} + z_{2} = a_{1} + a_{2} + i \cdot (b_{1} + b_{2})$ $z_{1} + z_{2} = a_{1} + a_{2} + i \cdot (b_{1} + b_{2})$	$i^2 = -1 \Rightarrow \sqrt{-1} = i$	Dla $z_1 = a_1 + i \cdot b_1$ $z_2 = a_2 + i \cdot b_2$	$z_1 = a_1 + i \cdot b_1$	$z_1 = z_2 \Leftrightarrow a_1 = a_2 \land b_1 = b_2$		
$z_1 \cdot z_2 = a_1 \cdot a_2 - b_1 \cdot b_2 + i \cdot (a_1 \cdot b_2 + b_1 \cdot a_2)$				$z_1 + z_2 = a_1 + a_2 + i \cdot (b_1 + b_2)$		
			$z_1 \cdot z_2 = a_1 \cdot a_2 - b_1 \cdot b_2 + i \cdot (a_1 \cdot b_2 + b_1 \cdot a_2)$			

	$z = a + i \cdot b = [r, \varphi]$	$= \mathbf{r} \cdot [\cos(\varphi) + i \cdot \sin(\varphi)] = \mathbf{r} \cdot e^{i \cdot \varphi}, \text{ gdzie } z = \mathbf{r} = \sqrt{a^2 + b^2}, \ \cos(\varphi) = \frac{a}{r}, \sin(\varphi) = \frac{b}{r}$
Dla $z_1 = [r_1, \varphi_1] - z_2 = [r_2, \varphi_2]$	$z_1 \cdot z_2 = [r_1 \cdot r_2, \varphi_1 + \varphi_2] = r_1 \cdot r_2 \cdot [\cos(\varphi_1 + \varphi_2) + i \cdot \sin(\varphi_1 + \varphi_2)]$	
	$z_1 = [r_1, \phi_1]$ $z_2 = [r_2, \phi_2]$	$\frac{z_1}{z_2} = \left[\frac{r_1}{r_2}, \phi_1 - \phi_2\right] = \frac{r_1}{r_2} \cdot \left[\cos(\phi_1 - \phi_2) + i \cdot \sin(\phi_1 - \phi_2)\right]$
		$z = [r, \phi] \Rightarrow z^{n} = [r^{n}, n \cdot \phi] = r^{n} \cdot [\cos(n \cdot \phi) + i \cdot \sin(n \cdot \phi)]$

$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} =$	= [a _{ij}] _{m×n}	$A^T =$	$\left[\mathbf{a}_{ji}\right]_{\mathbf{n}\times\mathbf{m}} \qquad \mathbf{k}\cdot A = \left[\mathbf{k}\cdot\mathbf{a}_{ij}\right]_{\mathbf{m}\times\mathbf{n}}$			
$A = \left[a_{ij}\right]_{m \times n} B = \left[b_{ij}\right]_{m \times n} \Rightarrow A + B = \left[a_{ij} + b_{ij}\right]_{m \times n}$			$A = \left[a_{ij}\right]_{m \times n} B$	$B = \left[\mathbf{b}_{ij}\right]_{n \times p} \Rightarrow A \cdot B = \left[\sum_{l=1}^{n} \mathbf{a}_{il} \cdot \mathbf{b}_{lj}\right]_{m \times p}$		
Wyznacznik			Dopełnienie			
$W = \det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ \vdots & \vdots \\ \vdots & \vdots \\ a_{n1} & a_{n2} \end{vmatrix}$	$\det(A) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \qquad A_{jk} = (-1)^{jk}$			$(-1)^{j+k} \cdot M_{jk} = (-1)^{j+k} \cdot \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2k} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jk} & \cdots & a_{jn} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} & \cdots & a_{nn} \end{vmatrix}$		
$W = \det(A) = \sum_{m}$	$\sum_{n=1}^{n} a_{wm} \cdot A_{wn}$	m	$W = \det(A) = \sum_{m=1}^{n} a_{mk} \cdot A_{mk}$			
Macierz odwrotna, A^{-1}		$A^{-1} \cdot A = A \cdot A^{-1}$	I = I	$A^{-1} = \frac{1}{\det(A)} \cdot \left[A_{jk}\right]^{T}$		
Równanie macierzowe		$A \cdot X = B$		$X = A^{-1} \cdot B$		