$y=\mathrm{a}+\mathrm{b} \cdot x \Rightarrow \mathrm{~b}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}$		$\frac{0}{0} \quad \infty \quad 0 \cdot \infty$	$\infty-\infty 0^{0} 1^{\infty} \quad \infty^{0}$
$0 \cdot \text { const }=0 \quad \infty \cdot \text { const }=\infty \quad \frac{\text { const }}{0}=\infty$	$\frac{\text { const }}{\infty}=0$	const $^{\infty}=\infty$	const $\pm \infty= \pm \infty$
const $+\infty=\infty$ const $-\infty=-\infty$ const $^{\infty}=\infty$			

$y=\mathrm{a}^{x}, \mathrm{a}>0$	$x^{0}=1$		$x^{\mathrm{a}} \cdot x^{\mathrm{b}}=x^{\mathrm{a}+\mathrm{b}}$
x^{a}			
$x^{\mathrm{a}-\mathrm{b}}$			
$\left(x^{\mathrm{a}}\right)^{\mathrm{b}}=x^{\mathrm{a} \cdot \mathrm{b}}$		$x \frac{\mathrm{a}}{\mathrm{b}}=(\sqrt[\mathrm{b}]{x})^{\mathrm{a}}=\sqrt[b]{x^{\mathrm{a}}}$	$x^{-\mathrm{a}}=\frac{1}{x^{\mathrm{a}}}$

$y=\log _{\mathrm{a}}(x), \mathrm{a}>0$ i $\mathrm{a} \neq 1, x>0$		$\log _{\mathrm{a}}(x)=y \Leftrightarrow x=\mathrm{a}^{y}$		$\log _{\mathrm{a}}(x \cdot y)=\log _{\mathrm{a}}(x)+\log _{\mathrm{a}}(y)$
$\log _{\mathrm{a}}\left(\frac{x}{y}\right)=\log _{\mathrm{a}}(x)-\log _{\mathrm{a}}(y)$	$\log _{\mathrm{a}}\left[(x)^{\mathrm{n}}\right]=\mathrm{n} \cdot \log _{\mathrm{a}}(x)$	$\log _{\mathrm{a}}(x)=\frac{\log _{\mathrm{b}}(x)}{\log _{\mathrm{b}}(a)}$	$\log _{\mathrm{e}}(x)=\ln (x)$ $\log _{10}(x)=\log (x)$	

$$
\begin{gathered}
a_{1}+a_{2}+a_{3}+\cdots+a_{n}=\sum_{i=1}^{n} a_{i}=\sum_{1}^{n} a_{i} \quad n!=1 \cdot 2 \cdot 3 \cdot \ldots(n-1) \cdot n \quad\binom{n}{k}=\frac{n!}{k!\cdot(n-k)!} \\
(x+y)^{n}=\binom{n}{0} \cdot x^{n} \cdot y^{0}+\binom{n}{1} \cdot x^{n-1} \cdot y^{1}+\binom{n}{2} \cdot x^{n-2} \cdot y^{2}+\cdots+\binom{n}{n-1} \cdot x^{n-(n-1)} \cdot y^{n-1}+\binom{n}{n} \cdot x^{n-n} \cdot y^{n} \\
\hline
\end{gathered}
$$

Strona 2

$F(x)=\int f(x) \mathrm{d} x \Leftrightarrow F^{\prime}(x)=f(x)$			$\int c \cdot f(x) \mathrm{d} x=c \cdot \int f(x) \mathrm{d} x$		$\int[f(x)+g(x)] \mathrm{d} x=\int f(x) \mathrm{d} x+\int g(x) \mathrm{d} x$	
$\int f(x) \cdot g^{\prime}(x) \cdot \mathrm{d} x=f(x) \cdot g(x)-\int f^{\prime}(x) \cdot g(x) \cdot \mathrm{d} x$					$\int u \cdot \mathrm{~d} v=u \cdot v-\int v \cdot \mathrm{~d} u$	
$\int x^{\mathrm{n}} \mathrm{d} x=\frac{1}{\mathrm{n}+1} \cdot x^{\mathrm{n}+1}+\mathrm{C}$			$\mathrm{d} x=\ln \|x\|+C$	$\int \mathrm{a}^{x} \mathrm{~d}$	$=\frac{a^{x}}{\ln (a)}+C$	
$\int \ln (x) \mathrm{d} x=x \cdot \ln (x)-x+\mathrm{C}$				$\int \sin (x) \mathrm{d} x=-\cos (x)+C$		
$\int \cos (x) \mathrm{d} x=\sin (x)+C$				$\int \frac{1}{\cos ^{2}(x)} \mathrm{d} x=\operatorname{tg}(x)+\mathrm{C}$		
$\int_{\mathrm{a}}^{\mathrm{b}} f(x) \mathrm{d} x=\left.F(x)\right\|_{\mathrm{a}} ^{\mathrm{b}}=F(\mathrm{~b})-F(\mathrm{a})$				$\int_{\mathrm{a}}^{\mathrm{b}} f(x) \mathrm{d} x=-\int_{\mathrm{b}}^{\mathrm{a}} f(x) \mathrm{d} x$		
$i^{2}=-1 \Rightarrow \sqrt{-1}=i$	$\begin{array}{ll} \text { Dla } & z_{1}=\mathrm{a}_{1}+i \cdot \mathrm{~b}_{1} \\ z_{2}=\mathrm{a}_{2}+i \cdot \mathrm{~b}_{2} \end{array}$			Z_{1}	$\frac{=z_{2} \Leftrightarrow \mathrm{a}_{1}=}{z_{2}=\mathrm{a}_{1}+\mathrm{a}}$	$\frac{b_{2}}{\left.+b_{2}\right)}$
				$z_{1} \cdot z_{2}=\mathrm{a}_{1} \cdot \mathrm{a}_{2}-\mathrm{b}_{1} \cdot \mathrm{~b}_{2}+i \cdot\left(\mathrm{a}_{1} \cdot \mathrm{~b}_{2}+\mathrm{b}_{1} \cdot \mathrm{a}_{2}\right)$		

