$\delta X=X-X_{0}$	$X_{0} \in\langle X-\Delta X, X+\Delta X\rangle$	$\bar{T}=\frac{T_{1}+T_{2}+T_{3}+\ldots .+T_{n}}{n}$	
$s_{T}=\sqrt{\frac{\left(T_{1}-\bar{T}\right)^{2}+\left(T_{2}-\bar{T}\right)^{2}+\cdots+\left(T_{n}-\bar{T}\right)^{2}}{n-1}}$	$s_{\bar{T}}=\frac{s_{T}}{\sqrt{n}}$	$\Delta T=3 \cdot s_{\bar{T}}$	
$F=$ const $\cdot A^{a} \cdot B^{b} \cdot C^{c} \cdot \cdots$	$\Delta F= \pm F \cdot\left[\left\|a \cdot \frac{\Delta A}{A}\right\|+\left\|b \cdot \frac{\Delta B}{B}\right\|+\left\|c \cdot \frac{\Delta C}{C}\right\|+\cdots\right]$	$F=A \pm B \Rightarrow \Delta F=\Delta A+\Delta B$	

$\frac{\sin (\alpha)}{\sin (\beta)}=\frac{v_{\alpha}}{v_{\beta}}=n_{\beta / \alpha}$	$n_{\alpha}=\frac{c}{v_{\alpha}}$	$\frac{1}{x}+\frac{1}{y}=\frac{1}{f}$	$z_{l}=\frac{1}{a_{m}}$	$z_{k}=\frac{1}{\alpha_{m}}$	$a_{m}=\frac{\lambda}{2 \cdot n \cdot \sin (u)}$
$A=n \cdot \sin (u)$	$z_{m i k}=\frac{2 \cdot A}{\lambda}$	$p=\frac{h^{\prime}}{h}$	$p=p_{o b} \cdot p_{o k} \approx \frac{l \cdot d}{f_{o b} \cdot f_{o k}}$	$500 \cdot A<p_{u \dot{z}}<1000 \cdot A$	

$F=\eta \cdot S \cdot \frac{\Delta v}{\Delta x}$	$\eta_{w \ddagger}=\frac{\eta}{\eta_{0}}-1$	$[\eta]=\lim _{c \rightarrow 0}\left(\frac{\eta_{w ł}}{c}\right)$	$\Delta V=\frac{\pi \cdot r^{4} \cdot \Delta t}{8 \cdot l \cdot \eta} \cdot \Delta p$
$R=6 \cdot \pi \cdot r \cdot v \cdot \eta$	$\eta=\frac{2 \cdot r^{2} \cdot g \cdot\left(\rho-\rho_{c}\right)}{9 \cdot v}$	$\frac{\eta}{\eta_{0}}=\frac{t}{t_{0}} \cdot \frac{\rho}{\rho_{0}}$	$\Phi=\frac{V_{c}}{V_{r}}$
$\frac{\eta}{\eta_{0}}=1+2,5 \cdot \Phi$	$[\eta]=2,5 \cdot \frac{N_{A}}{M} \cdot v_{c z}$	$r=\sqrt[3]{\frac{3 \cdot M}{10 \cdot \pi \cdot N_{A}} \cdot[\eta]}$	$\frac{\rho}{\rho_{0}}=1+0,23 \cdot c$

$W=\sigma \cdot \Delta S$	$\sigma=\frac{F}{l}$	$\Delta p=\frac{2 \cdot \sigma}{R}$	$\frac{\sigma}{\sigma_{0}}=\frac{n_{0} \cdot \rho}{n \cdot \rho_{0}}$	$\sigma=\frac{r \cdot h \cdot \rho \cdot g}{2 \cdot \cos (\alpha)}$	$\sigma=\frac{\rho \cdot V \cdot g}{2 \cdot \pi \cdot r \cdot n}$
$\sigma_{p}=\frac{F}{l}$	$\sigma_{p}=\sigma_{0}-\sigma$	$\sigma_{p} \cdot S_{w}=n_{c z} \cdot k_{B} \cdot T$	$S_{w}=n_{c z} \cdot s_{0}$		
$V_{w}=\frac{c \cdot V_{k}}{\rho}$	$s_{c z}=\frac{S_{w}}{n_{c z}}=\frac{S_{w} \cdot M}{c \cdot V_{k} \cdot N_{A}}$	$d_{c z}=\sqrt{\frac{4 \cdot s_{c z}}{\pi}}$	$l_{c z}=\frac{c \cdot V_{k}}{\rho \cdot S_{w}}$		

$\frac{\mathrm{d} n}{\mathrm{~d} t}=-D \cdot S \cdot \frac{\mathrm{~d} c}{\mathrm{~d} x}$	$D=\frac{k \cdot T}{6 \cdot \pi \cdot r \cdot \eta}$	$\overline{\Delta x^{2}}=2 \cdot D \cdot t$	$P=\frac{D}{\mathrm{~d} x}$
$\frac{\mathrm{~d} n}{\mathrm{~d} t}=P \cdot S \cdot\left(c_{1}-c_{2}\right)$	$c_{2}=\frac{c_{0}}{2} \cdot\left(1-e^{-c \cdot D \cdot t}\right)$	$C=\frac{2 \cdot A}{V \cdot \mathrm{~d} x}$	$\ln \left(\frac{c_{0}}{c_{0}-2 \cdot c_{2}}\right)=C \cdot D \cdot t$
$\frac{c_{0}}{2}=c_{0} \cdot \mathrm{e}^{-\kappa \cdot t_{1 / 2}}$	$c=c_{0} \cdot \mathrm{e}^{-\kappa \cdot t}$	$\kappa=\frac{\ln (2)}{t_{1 / 2}} \approx \frac{0,693}{t_{1 / 2}}$	$\pi=f \cdot c_{m} \cdot R \cdot T$

$\mu_{i}=\left(\frac{\partial G_{i}}{\partial n_{i}}\right)_{T, p, n_{j} d l a j \neq i}$	$\mu_{i}=\mu_{i c}^{0}+R \cdot T \cdot \ln \left(c_{i}\right)$	$\widetilde{\mu}_{i}=\mu_{i}+\varphi \cdot F \cdot z$	$M e \rightleftharpoons M e^{z+}+z \cdot e^{-}$
$\Delta V_{e}=V_{e}-V_{r}=\Delta V_{0}+\left(\frac{R \cdot T}{Z \cdot F}\right) \cdot \ln \left(c_{j}\right)$		$\Delta V_{d}=V_{2}-V_{1}=\left(\frac{u^{+}-u^{-}}{u^{+}+u^{-}}\right) \cdot\left(\frac{R \cdot T}{z \cdot F}\right) \cdot \ln \left(\frac{c_{1}}{c_{2}}\right)$	
$u=\frac{v}{E}$	$E=\left(\frac{R \cdot T}{z \cdot F}\right) \cdot \ln \left(\frac{c_{1}}{c_{2}}\right)$	$E=\Delta V_{e 1}-\Delta V_{e 2}$	$E=\Delta V_{e}-\Delta V_{k a l}$
$W=q \cdot U$	$I=\frac{1}{R} \cdot U$	$G=\frac{1}{R}$	$R=\rho \cdot \frac{l}{S}$

| $h \cdot v=E_{k}+W$ | $h \cdot v=E_{k}+h \cdot v^{\prime}+W$ | | $h \cdot v=E_{k p}+m_{0 p} \cdot c^{2}+E_{k e}+m_{0 e} \cdot c^{2}$ | $I=I_{0} \cdot e^{-\mu \cdot d}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mu_{m}=\frac{\mu}{\rho}$ | $d_{1 / 2}=\frac{\ln (2)}{\mu} \approx \frac{0,693}{\mu}$ | $a=a_{0} \cdot \mathrm{e}^{-\mu \cdot d}$ | $\ln (a)=\ln \left(a_{0}\right)-\mu \cdot d$ | $L E T=\frac{\Delta E}{\Delta d}$ | $\frac{\Delta n_{j}}{\Delta d}$ |

$Q=\frac{\Delta V}{\Delta t}$	$S_{1} \cdot v_{1}=S_{2} \cdot v_{2}=$ const		$p_{S 1}+\rho \cdot g \cdot h_{1}+\frac{1}{2} \cdot \rho \cdot v_{1}^{2}=p_{s 2}+\rho \cdot g \cdot h_{2}+\frac{1}{2} \cdot \rho \cdot v_{2}^{2}=$ const	
$Q=\frac{\pi \cdot r^{4}}{8 \cdot l \cdot \eta} \cdot \Delta p$	$Q=\frac{1}{R_{N}} \cdot \Delta p$	$N_{R}=\frac{2 \cdot r \cdot v \cdot \rho}{\eta}$	$v_{p}=\frac{\Delta V}{S \cdot \Delta t}$	
$v=\sqrt{\frac{K}{\rho}}$	$K=\frac{\Delta p}{\frac{\Delta V}{V}}$	$v_{t}=F \cdot \sqrt{\frac{E \cdot d}{2 \cdot R \cdot \rho_{c}}}$	$v_{t}=\frac{l_{A B}}{\Delta t}$	

Przedrostek	范	$\begin{aligned} & \mathscr{\infty} \\ & \stackrel{0}{8} \\ & \hline \end{aligned}$	$\stackrel{\circ}{\underline{x}}$	$\begin{aligned} & \stackrel{o}{t} \\ & \underset{\sim}{d} \end{aligned}$	$\frac{\mathbb{y}}{\mathbb{D}}$	$\begin{aligned} & \text { ì } \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{U}}{\stackrel{\rightharpoonup}{U}}$	寝	$\frac{\circ}{c}$	츠제	을
Symbol	G	M	k	h	da	d	c	m	μ	n	p
Mnożnik	10^{9}	10^{6}	10^{3}	10^{2}	10^{1}	10^{-1}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}

