$\delta X = X - X_0$		$X_0 \in \langle X - \Delta X, X + \Delta X \rangle$		$\overline{T} = \frac{T_1 + T_2 + T_3 + \dots + T_n}{n}$		
$s_T = \sqrt{\frac{(T_1 - \bar{T})^2 + (T_2)^2}{T_1 - T_2}}$	$\frac{1}{n-1}(1-x)^2 + \cdots$	$\cdots + (T_n - \overline{T})^2$	$s_{\overline{T}} = \frac{s_T}{\sqrt{n}}$		$\Delta T = 3 \cdot s_{\overline{T}}$	
$F = const \cdot A^a \cdot B^b \cdot C^c \cdot \dots$	ΔF	$= \pm F \cdot \left[\left a \cdot \frac{\Delta A}{A} \right + \left b \cdot \frac{\Delta B}{B} \right + \left c \cdot \frac{\Delta C}{C} \right + \cdot \right]$]	$F = A \pm B =$	$\Rightarrow \Delta F = \Delta A + \Delta B$
$\frac{\sin(\alpha)}{\sin(\beta)} = \frac{v_{\alpha}}{v_{\beta}} = n_{\beta/\alpha} \qquad n_{\alpha} = \frac{c}{v_{\alpha}}$		$\frac{1}{x} + \frac{1}{y} = \frac{1}{f} \qquad \qquad z_l = \frac{1}{a_m}$		Z_k	$a_m = \frac{1}{\alpha_m}$ $a_m = \frac{\lambda}{2 \cdot n \cdot \sin(u)}$	
$A = n \cdot \sin(u) \qquad \qquad z_{mik} = \frac{2 \cdot A}{\lambda}$		$p = \frac{h'}{h}$	$p = p_{ob} \cdot p_{ok} \approx \frac{l \cdot d}{f_{ob} \cdot f_{ok}}$		$500 \cdot A < p_{u\dot{z}} < 1000 \cdot A$	
$F = \eta \cdot S \cdot \frac{\Delta v}{\Delta x}$		$\eta_{w^{\frac{1}{2}}} = \frac{\eta}{\eta_0} - 1$	$[\eta] = \lim_{c \to 0} \left(\frac{\eta_{w!}}{c} \right)$		$\Delta V = \frac{\pi \cdot r^4 \cdot \Delta t}{8 \cdot l \cdot \eta} \cdot \Delta p$	
$R = 6 \cdot \pi \cdot r \cdot v \cdot \eta$	$\eta = \frac{2}{2}$	$\frac{\cdot r^2 \cdot g \cdot (\rho - \rho_c)}{9 \cdot v}$	$\frac{\eta}{\eta_0} = \frac{t}{t_0} \cdot \frac{\rho}{\rho_0}$		$\Phi = \frac{V_c}{V_r}$	
$\frac{\eta}{\eta_0} = 1 + 2,5 \cdot \Phi$	$[\eta] = 2.5 \cdot \frac{N_A}{M} \cdot v_{cz}$		$r = \sqrt[3]{\frac{3 \cdot M}{10 \cdot \pi \cdot N_A} \cdot [\eta]}$		$\frac{\rho}{\rho_0} = 1 + 0.23 \cdot c$	
$W = \sigma \cdot \Delta S \qquad \qquad \sigma = \frac{F}{l}$		$\Delta p = \frac{2 \cdot \sigma}{R}$	$\frac{\sigma}{\sigma_0} = \frac{n_0 \cdot \rho}{n \cdot \rho_0} \qquad \sigma = \frac{r \cdot \rho}{2 \cdot \rho}$		$\frac{h \cdot \rho \cdot g}{\cos(\alpha)}$	$\sigma = \frac{\rho \cdot V \cdot g}{2 \cdot \pi \cdot r \cdot n}$
$\sigma_p = \frac{F}{l}$	$\sigma_p = \sigma_0 - \sigma$		$\sigma_p \cdot S_w = n_{cz} \cdot k_B \cdot T$		$S_w = n_{cz} \cdot s_0$	
$V_w = \frac{c \cdot V_k}{\rho}$	$s_{cz} = \frac{S_w}{n_{cz}} = \frac{S_w \cdot M}{c \cdot V_k \cdot N_A}$		$d_{cz} = \sqrt{\frac{4 \cdot s_{cz}}{\pi}}$		$l_{cz} = \frac{c \cdot V_k}{\rho \cdot S_w}$	
$\frac{\mathrm{d}n}{\mathrm{d}t} = -D \cdot S \cdot \frac{\mathrm{d}c}{\mathrm{d}x}$	$D = \frac{k \cdot T}{6 \cdot \pi \cdot r \cdot \eta}$		$\overline{\Delta x^2} = 2 \cdot D \cdot t$		$P = \frac{D}{\mathrm{d}x}$	
$\frac{\mathrm{d}n}{\mathrm{d}t} = P \cdot S \cdot (c_1 - c_2)$	$c_2 = \frac{c_0}{2} \cdot (1 - e^{-C \cdot D \cdot t})$		$C = \frac{2 \cdot A}{V \cdot \mathrm{d}x}$		$\ln \left(\frac{c_0}{c_0 - 2 \cdot c_2}\right) = C \cdot D \cdot t$	
$\frac{c_0}{2} = c_0 \cdot \mathrm{e}^{-\kappa \cdot t_{1/2}}$	$c = c_0 \cdot \mathrm{e}^{-\kappa \cdot t}$		$\kappa = \frac{\ln(2)}{t_{1/2}} \approx \frac{0,693}{t_{1/2}}$		$\pi = f \cdot c_m \cdot R \cdot T$	
$\mu_i = \left(\frac{\partial G_i}{\partial n_i}\right)_{T, p, n_j dla j \neq i}$	$\mu_i = \mu_{ic}^0 + R \cdot T \cdot \ln(c_i)$		$\tilde{\mu}_i = \mu_i + \varphi \cdot F \cdot z$		$Me \rightleftharpoons Me^{z+} + z \cdot e^{-}$	
$\Delta V_e = V_e - V_r = \Delta V_0 + \left(\frac{R \cdot T}{z \cdot F}\right)$		$)\cdot\ln(c_j)$ $\Delta V_d = V_2 - V_1$		$V_1 = \left(\frac{u^+ - u^+}{u^+ + u^+}\right)$	$= \left(\frac{u^+ - u^-}{u^+ + u^-}\right) \cdot \left(\frac{R \cdot T}{z \cdot F}\right) \cdot \ln\left(\frac{c_1}{c_2}\right)$	
$u = \frac{v}{E}$	$E = \left(\frac{R \cdot T}{z \cdot F}\right) \cdot \ln\left(\frac{c_1}{c_2}\right)$		$E = \Delta V_{e1} - \Delta V_{e2}$		$E = \Delta V_e - \Delta V_{kal}$	
$W = q \cdot U$		$I = \frac{1}{R} \cdot U$	$G = \frac{1}{R}$		$R = \rho \cdot \frac{l}{S}$	
$h \cdot v = E_k + W$ $h \cdot v =$	$_{p}+m_{0p}\cdot c^{2}+E_{ke}+m_{0e}\cdot c^{2}$		$I = I_0 \cdot e^{-\mu \cdot d}$			
$\mu_m = \frac{\mu}{\rho} \qquad d_{1/2} = \frac{\ln(2)}{\mu} \approx \frac{0,693}{\mu}$		$a = a_0 \cdot \mathrm{e}^{-\mu \cdot d}$	$\ln(a) = \ln(a_0) - \mu$	⊥∙d Li	$ET = \frac{\Delta E}{\Delta d}$	$rac{\Delta n_j}{\Delta d}$

