BUB ćwiczenia

$\delta X=X-X_{0} \quad X_{0} \in$	$X_{0} \in\langle X-\Delta X, X+\Delta X\rangle$	$\bar{T}=\frac{T_{1}+T_{2}+T_{3}+\ldots \ldots+T_{n}}{n}$	$s_{T}=\sqrt{\frac{\left(T_{1}-\bar{T}\right)^{2}+\left(T_{2}-\bar{T}\right)^{2}+\cdots+\left(T_{n}-\bar{T}\right)^{2}}{n-1}}$
$s_{\bar{T}}=\frac{s_{T}}{\sqrt{n}}$	$F=$ const $\cdot A^{a} \cdot B^{b} \cdot C^{c} \cdot \ldots$		$\Delta F= \pm F \cdot\left[\left\|a \cdot \frac{\Delta A}{A}\right\|+\left\|b \cdot \frac{\Delta B}{B}\right\|+\left\|c \cdot \frac{\Delta C}{C}\right\|+\ldots\right]$
		$\pm B \Rightarrow \Delta F=\Delta A+\Delta B$	

$F=\eta \cdot S \cdot \frac{\Delta v}{\Delta x}$	$\eta_{w \mathfrak{l}}=\frac{\eta}{\eta_{0}}-1$	$[\eta]=\lim _{c \rightarrow 0}\left(\frac{\eta_{w ł}}{c}\right)$	$\Delta V=\frac{\pi \cdot r^{4} \cdot \Delta t}{8 \cdot l \cdot \eta} \cdot \Delta p$
$R=6 \cdot \pi \cdot r \cdot v \cdot \eta$	$\eta=\frac{2 \cdot r^{2} \cdot g \cdot\left(\rho-\rho_{c}\right)}{9 \cdot v}$	$\frac{\eta}{\eta_{0}}=\frac{t}{t_{0}} \cdot \frac{\rho}{\rho_{0}}$	$\Phi=\frac{V_{c}}{V_{r}}$
$\frac{\eta}{\eta_{0}}=1+2,5 \cdot \Phi$	$[\eta]=2,5 \cdot \frac{N_{A}}{M} \cdot v_{c z}$	$r=\sqrt[3]{\frac{3 \cdot M}{10 \cdot \pi \cdot N_{A}} \cdot[\eta]}$	$\frac{\rho}{\rho_{0}}=1+0,23 \cdot c$

$\sigma_{p}=\frac{F}{l}$	$\sigma_{p}=\sigma_{0}-\sigma$	$\sigma_{p} \cdot S_{w}=n_{c z} \cdot k_{B} \cdot T$	$S_{w}=n_{c z} \cdot s_{0}$	
$V_{w}=\frac{c \cdot V_{k}}{\rho}$	$s_{c z}=\frac{S_{w}}{n_{c z}}=\frac{S_{w} \cdot M}{c \cdot V_{k} \cdot N_{A}}$	$d_{c z}=\sqrt{\frac{4 \cdot S_{c z}}{\pi}}$	$l_{c z}=\frac{c \cdot V_{k}}{\rho \cdot S_{w}}$	
$W=\sigma \cdot \Delta S$	$\sigma=\frac{F}{l}$	$\Delta p=\frac{2 \cdot \sigma}{R}$	$\frac{\sigma}{\sigma_{0}}=\frac{n_{0} \cdot \rho}{n \cdot \rho_{0}}$	$\sigma=\frac{r \cdot h \cdot \rho \cdot g}{2 \cdot \cos (\alpha)}$

$\frac{\mathrm{d} n}{\mathrm{~d} t}=-D \cdot S \cdot \frac{\mathrm{~d} c}{\mathrm{~d} x}$	$D=\frac{k \cdot T}{6 \cdot \pi \cdot r \cdot \eta}$	$\overline{\Delta x^{2}}=2 \cdot D \cdot t$	$P=\frac{D}{\mathrm{~d} x}$
$\frac{\mathrm{~d} n}{\mathrm{~d} t}=P \cdot S \cdot\left(c_{1}-c_{2}\right)$	$c_{2}=\frac{c_{0}}{2} \cdot\left(1-e^{-C \cdot D \cdot t}\right)$	$C=\frac{2 \cdot A}{V \cdot \mathrm{~d} x}$	$\ln \left(\frac{c_{0}}{c_{0}-2 \cdot c_{2}}\right)=C \cdot D \cdot t$
$\frac{c_{0}}{2}=c_{0} \cdot \mathrm{e}^{-\kappa_{E} \cdot t_{1 / 2}}$	$c=c_{0} \cdot \mathrm{e}^{-\kappa_{D} \cdot t}$	$c=c_{0} \cdot \mathrm{e}^{-\kappa_{E} \cdot t}$	$\kappa_{E}=\frac{\ln (2)}{t_{1 / 2}} \approx \frac{0,693}{t_{1 / 2}}$

$$
\begin{array}{l|l|l}
\hline \mu_{i}=\left(\frac{\partial G_{i}}{\partial n_{i}}\right)_{T, p, n_{j} d l a}^{j \neq i} & \mu_{i}=\mu_{i c}^{0}+R \cdot T \cdot \ln \left(c_{i}\right) & \tilde{\mu}_{i}=\mu_{i}+\varphi \cdot F \cdot z
\end{array}
$$

$$
\begin{array}{c|c|c}
\hline M e \rightleftharpoons M e^{z+}+z \cdot e^{-} & \Delta V_{e}=V_{e}-V_{r}=\Delta V_{0}+\left(\frac{R \cdot T}{z \cdot F}\right) \cdot \ln \left(c_{j}\right) \quad \Delta V_{d}=V_{2}-V_{1}=\left(\frac{u^{+}-u^{-}}{u^{+}+u^{-}}\right) \cdot\left(\frac{R \cdot T}{z \cdot F}\right) \cdot \ln \left(\frac{c_{1}}{c_{2}}\right) \\
\hline
\end{array}
$$

$$
\begin{array}{l|l|l|l}
\hline u=\frac{v}{E} & E=\left(\frac{R \cdot T}{Z \cdot F}\right) \cdot \ln \left(\frac{c_{1}}{c_{2}}\right) & E=\Delta V_{e 1}-\Delta V_{e 2} & W=q \cdot U \\
\hline
\end{array}
$$

$$
\begin{array}{l|l|l}
\hline J=\frac{I}{S} & J \cdot \Delta t=\frac{I \cdot \Delta t}{S}=\frac{\Delta Q}{S} & I_{p}=(C H \cdot R) \cdot \frac{1}{\Delta t}+R \\
\hline
\end{array}
$$

$$
Q=\frac{\Delta V}{\Delta t} \quad S_{1} \cdot v_{1}=S_{2} \cdot v_{2}=\text { const } \quad p_{S 1}+\rho \cdot g \cdot h_{1}+\frac{1}{2} \cdot \rho \cdot v_{1}^{2}=p_{S 2}+\rho \cdot g \cdot h_{2}+\frac{1}{2} \cdot \rho \cdot v_{2}^{2}=\text { const. }
$$

$$
Q=\frac{\pi \cdot r^{4}}{8 \cdot l \cdot \eta} \cdot \Delta p \quad Q=\frac{1}{R_{N}} \cdot \Delta p
$$

$$
N_{R}=\frac{2 \cdot r \cdot v \cdot \rho}{\eta}
$$

$$
v=\sqrt{\frac{K}{\rho}} \quad K=\frac{\Delta p}{\frac{\Delta V}{V}} \quad v_{t}=F \cdot \sqrt{\frac{E \cdot d}{2 \cdot R \cdot \rho_{c}}} \quad v_{p}=\frac{\Delta V}{S \cdot \Delta t} \quad v_{t}=\frac{l_{A B}}{\Delta t}
$$

| $D=D_{1}+D_{2}-\frac{d}{n} \cdot D_{1} \cdot D_{2}$ | $R=\frac{1}{s_{D}}$ | $D_{k o m}=\frac{1}{L}$ | $R=D-D_{\text {kom }}$ | $A=\frac{1}{s_{D}}-\frac{1}{s_{B}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{\sin (\alpha)}{\sin (\beta)}=\frac{v_{\alpha}}{v_{\beta}}=\frac{\lambda_{\alpha}}{\lambda_{\beta}}=\frac{n_{\beta}}{n_{\alpha}}=n_{\beta / \alpha}$ | $n_{\alpha}=\frac{c}{v_{\alpha}} \quad$ | $\frac{1}{s^{\prime}}-\frac{1}{s}=\frac{1}{f^{\prime}} \quad D=\frac{1}{f^{\prime}}=\left(\frac{n_{s o c z}}{n_{o t}}-1\right) \cdot\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$ | | |

$\Omega=\frac{S}{R^{2}}$	$I_{E} \stackrel{\text { def }}{=} \frac{\Phi_{E}}{\Omega} \Rightarrow\left[I_{E}\right]=\frac{\mathrm{W}}{\mathrm{sr}}$	$I_{V}=\frac{\Phi_{V}}{\Omega} \Rightarrow\left[I_{V}\right]=\mathrm{cd}=\frac{\mathrm{lm}}{\mathrm{sr}}$
$\Phi_{V}=I_{V} \cdot \Omega \Rightarrow\left[\Phi_{V}\right]=\mathrm{lm}=\mathrm{cd} \cdot \mathrm{sr}$	$P=\Phi_{E} \stackrel{\text { def }}{ } \frac{Q_{E}}{t} \Rightarrow\left[\Phi_{E}\right]=W$	$\Phi_{V}=\left(683 \frac{\mathrm{~lm}}{\mathrm{~W}}\right) \cdot V_{\lambda} \cdot \Phi_{E}$
$E_{V} \stackrel{\text { def }}{=} \frac{\Phi_{V}}{S} \Rightarrow\left[E_{V}\right]=1 \mathrm{~lx}=\frac{1 \mathrm{~lm}}{1 \mathrm{~m}^{2}}$	$E_{V}=\frac{I_{V}}{r^{2}} \cdot \cos (\alpha)$	$L_{V}=\frac{I_{V}}{S \cdot \cos (\alpha)} \Rightarrow\left[L_{V}\right]=\frac{\mathrm{cd}}{\mathrm{m}^{2}}$
$I_{V}(\alpha)=I_{V \perp} \cdot \cos (\alpha)$	$L_{V}=\frac{\Phi_{V}}{S \cdot \cos (\alpha) \cdot \Omega}$	
		780

| $p=\rho \cdot c \cdot v$ | $I=\frac{\Delta E}{\Delta t \cdot S}=\frac{P}{S}$ | $I=\frac{1}{2} \cdot \frac{p_{0}{ }^{2}}{\rho \cdot c}$ | $L=\log _{10}\left(\frac{I}{I_{0}}\right)$ | $L_{p}=2 \cdot \log _{10}\left(\frac{p}{p_{0}}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $L=10 \cdot \log _{10}\left(\frac{I}{I_{0}}\right)=20 \cdot \log _{10}\left(\frac{U}{U_{0}}\right)$ | $\frac{\Delta I}{I}=c o n s t$ | $\frac{\Delta f}{f}=0,3 \%$ | $Z_{W}=\rho \cdot c=\sqrt{\rho \cdot E}$ | $R=\frac{I_{R}}{I_{I}}=\left(\frac{Z_{1}-Z_{2}}{Z_{1}+Z_{2}}\right)^{2}$ |

Krzywe izofoniczne „normalnego" ucha według Fletchera i Munsona:

