$\delta X = X - X_0$	$X_0 \in \langle X - \Delta X, X + \Delta X \rangle$			$\overline{T} = \frac{T_1}{T_2}$			$\frac{T_1 + T_2 + T_3 + \ldots + T_n}{n}$			
$s_T = \sqrt{\frac{(T_1 - \bar{T})^2 + (T_2)^2}{T_1^2 + (T_2)^2 + (T_2)^2}}$	$\cdots + (T_n - \bar{T})^2$	-	$s_{\overline{T}} = \frac{s_T}{\sqrt{n}}$			$\Delta T = 3 \cdot s_{\overline{T}}$				
$F = const \cdot A^a \cdot B^b \cdot C^c \cdot \dots$	$= \pm F \cdot \left[\left a \cdot \right \right]$	$b \cdot \frac{\Delta B}{B} \Big +$	$\left \frac{\Delta B}{B} \right + \left c \cdot \frac{\Delta C}{C} \right + \cdots \right $			$F = A \pm B \Rightarrow \Delta F = \Delta A + \Delta B$				
$\lambda_{min} = \frac{h \cdot c}{e \cdot U_a}$	$I = C \cdot Z$	2	$h \cdot \nu$	$=E_k+W$	/ h	$h \cdot v = E_k + h \cdot v' + W$				
$h \cdot v = E_{kp} + m_{0p} \cdot c^2 + E_k$	$I = C^2$	$= I_0 \cdot e^-$	$\mu_m = \frac{\mu}{\rho}$			$d_{1/2} = \frac{\ln(2)}{\mu} \approx \frac{0,693}{\mu}$				
$a = a_0 \cdot e^{-\mu \cdot d} \qquad \ln(a)$	$a = a_0 \cdot e^{-\mu \cdot d} \qquad \qquad \ln(a) = \ln(a_0)$			$D = \frac{\Delta E}{\Delta l}$ $D = \frac{\Delta E}{\Delta n}$			$X = \frac{\Delta Q}{\Delta m}$			
$H = Q \cdot D$	$D' = \frac{\Delta}{\Delta}$	D st	H =	$= 1000 \cdot \frac{\mu}{}$	$\frac{-\mu_{wody}}{\mu_{wody}}$		N =	$=N_0\cdot 2^{\frac{t}{T_{1/2}}}$		
$\frac{\sin(\alpha)}{\sin(\beta)} = \frac{v_{\alpha}}{v_{\beta}} = \frac{\lambda_{\alpha}}{\lambda_{\beta}} = \frac{n_{\beta}}{n_{\alpha}} = n_{\beta}$	$n_{\alpha} = \frac{c}{v_{\alpha}} \qquad \frac{1}{x} + \frac{1}{y} =$			$\frac{1}{f}$	$z_l = \frac{1}{2}$	$\frac{1}{a_m}$	$z_k = \frac{1}{\alpha_m}$			
$A = n \cdot \sin(u)$	$a_m = \frac{\lambda}{2 \cdot n \cdot \sin(u)}$			$z_{mik} = \frac{2 \cdot A}{\lambda}$			p = q	$p = p_{ob} \cdot p_{ok} \approx \frac{l \cdot d}{f_{ob} \cdot f_{ok}}$		
$500 \cdot A < p_{u\dot{z}} < 1000 \cdot$		<i>p</i> =	$\frac{h'}{h}$			$p = \frac{h}{\lambda}$				
$F = F_0 \cdot e^{-\frac{t}{\tau}}$	$\tau = \frac{\eta}{E}$				$\Delta l = v_p \cdot v$	t	$u = -\frac{1}{\tau}$			
$\Delta l = \Delta l_0 \cdot \left(1 - e^{-\frac{t}{\tau_d}}\right)$	(F+a)	$\cdot (v+b) = c$	const	$P_{maks} = \frac{1}{2}$	$\frac{1}{3} \cdot F_{maks}$	$\frac{1}{3} \cdot v_{maks}$		$p = \frac{F}{S}$		
$F = k \cdot \Delta x$	7	$p = K \cdot \frac{\Delta V}{V}$		$ au = G \cdot \gamma$			$p = E \cdot \frac{\Delta L}{L}$			
$\frac{\mathrm{d}n}{\mathrm{d}t} = -D \cdot S \cdot \frac{\mathrm{d}c}{\mathrm{d}x}$	D	$=\frac{k\cdot T}{6\cdot \pi\cdot r\cdot \eta}$		$\overline{\Delta x^2} = 2 \cdot D \cdot t$			$P = \frac{D}{\mathrm{d}x}$			
$\frac{\mathrm{d}n}{\mathrm{d}t} = P \cdot S \cdot (c_1 - c_2)$	$c_2 = \frac{c_2}{c_2}$	$\frac{c_0}{2} \cdot (1 - e^{-C \cdot D \cdot t})$		$C = \frac{2 \cdot A}{V \cdot \mathrm{d}x}$			$\ln \left(\frac{c_0}{c_0 - 2 \cdot c_2} \right) = C \cdot D \cdot t$			
$\frac{c_0}{2} = c_0 \cdot \mathrm{e}^{-\kappa \cdot t_{1/2}}$	$c = c_0 \cdot e^{-\kappa \cdot t}$			κ =	$\frac{\ln(2)}{t_{1/2}} \approx \frac{0}{1}$	t _{1/2}	$\pi = f \cdot c_m \cdot R \cdot T$			
$E = E_{el} + E_{osc} + E_{rot}$	$h \cdot \nu = E_2 - E_1 = \Delta E_{el} + \Delta$			$E_{osc} + \Delta E_{rot} \qquad P = P_0 \cdot e^{-1}$			$k = a_{\lambda} \cdot c$			
$P = P_0 \cdot e^{-a_{\lambda} \cdot c \cdot d}$	$\tau = \frac{P}{P_0}$			τ	$e^{-a_{\lambda} \cdot c}$	d	$A = -\log(\tau)$			
$A = \varepsilon_{\lambda} \cdot c \cdot d$	$\varepsilon_{\lambda} = a_{\lambda} \cdot \log(e)$				SpO ₂ =	$=\frac{o}{deoksyl}$	ksyHb Hb + oks	$\frac{syHb}{b + oksyHb} \cdot 100\%$		
$R = \frac{U}{I} = \frac{1}{G}$	$\kappa = \frac{1}{\rho}$		$R = \rho$	$\frac{\ell}{S} = \frac{1}{G}$		$\varepsilon_r = \frac{C}{C_0}$		$C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{S}{d}$		
$P = \frac{q}{S}$ \bar{P}	$\tau = \frac{1}{2}$	$K = \frac{R_{10^4}}{R_{10^6}}$			Φ	$\Phi = \frac{V_{krwinek}}{V_{krwinek+osocza}}$				
$\frac{\frac{\kappa}{\kappa_o} - 1}{\frac{\kappa}{\kappa_o} + 2} = \phi \cdot \frac{\frac{\kappa_k}{\kappa_o} - 1}{\frac{\kappa_k}{\kappa_o} + 2}$	$\Phi = \frac{2 \cdot (\kappa_o - \kappa)}{\kappa + 2 \cdot \kappa_o}$			$\kappa = \frac{C}{R}$			$X_C = \frac{1}{\omega \cdot C}$			

A 17						1			1					
$Q = \frac{\Delta V}{\Delta t}$	$S_1 \cdot \iota$	$v_1 = S_2$	$v_2 = cons$	p_S	$p_{S1} + \rho \cdot g \cdot h_1 + \frac{1}{2} \cdot \rho \cdot v_1^2 = p_{S2} + \rho \cdot g \cdot h_2 + \frac{1}{2} \cdot \rho \cdot v_2^2 = const.$									
$Q = \frac{\pi \cdot r^4}{8 \cdot l \cdot \eta} \cdot \Delta p$				$Q = \frac{1}{R_N} \cdot \Delta p$				$N_R = \frac{2 \cdot r \cdot v \cdot \rho}{\eta}$						
$v = \sqrt{\frac{K}{\rho}}$	-	K =	$= \frac{\Delta p}{\frac{\Delta V}{V}}$	$v_t = 1$	$F \cdot \sqrt{\frac{2}{2}}$	$\frac{E \cdot d}{\cdot R \cdot \rho_c}$	$v_p = \frac{\Delta V}{S \cdot \Delta t}$			$v_t = rac{l_{AB}}{\Delta t}$				
$Me \rightleftharpoons Me^{z+}$	$+z \cdot e^-$	ΔV_e	$= V_e - V_r$	$L = \Delta V_0 + \left(\frac{R \cdot T}{z \cdot F}\right) \cdot \ln(c_j)$			$\Delta V_d = V_2 - V_1 = \left(\frac{u^+ - u^-}{u^+ + u^-}\right) \cdot \left(\frac{R \cdot T}{z \cdot F}\right) \cdot \ln\left(\frac{c_1}{c_2}\right)$							
$u = \frac{v}{E}$				$E = \Delta V_{e1} - \Delta V_{e2}$				$E = \left(\frac{R \cdot T}{z \cdot F}\right) \cdot \ln\left(\frac{c_1}{c_2}\right)$						
$E = \Delta V_e$	$-\Delta V_{kal}$		W	$= q \cdot U$		$I = \frac{1}{R} \cdot U$			$R = \rho \cdot \frac{l}{S}$					
$J = \frac{I}{S}$				J·	$\Delta t = \frac{I \cdot I}{S}$	$\frac{\Delta t}{S} = \frac{\Delta Q}{S}$	$I_p = (CH \cdot R) \cdot \frac{1}{\Delta t} + R$				2			
KZS > AZS AOS > KOS $Q =$				$i \cdot t = const$			$i = \frac{a}{t} + b$			$\alpha = \frac{w \cdot p \cdot a \cdot (\text{mA})}{r \cdot (\text{mA})}$				
$F = \eta \cdot S \cdot \frac{\Delta v}{\Delta x} \qquad \qquad \eta$			$\eta_{w^{1}}$	$=\frac{\eta}{\eta_0}-1$		$[\eta] = \lim_{c \to 0} \left(\frac{\eta_{wt}}{c}\right)$			$\Delta V = \frac{\pi \cdot r^4 \cdot \Delta t}{8 \cdot l \cdot \eta} \cdot \Delta p$					
$R=6\cdot\pi$	$\cdot r \cdot v \cdot \eta$		$\eta = \frac{2 \cdot r}{}$	$\frac{g \cdot g \cdot (\rho - g)}{g \cdot v}$	$\frac{\eta}{\eta_0}$	$= \frac{t}{t_0} \cdot \frac{\rho}{\rho_0}$		$\Phi = rac{V_c}{V_r}$						
$\frac{\eta}{\eta_0} = 1 +$	+ 2,5 · Φ		[η] =	$2,5\cdot\frac{N_A}{M}\cdot v_a$	cz	$r = \sqrt[3]{\frac{1}{1}}$	$\frac{3 \cdot M}{0 \cdot \pi \cdot N_A}$	· [η]	$\frac{\rho}{\rho_0} = 1 + 0.23 \cdot c$					
Przedrostek	giga	mega	kilo	hekto	deka	decy	centy	mili	mikro	nano	piko			
Symbol	G 109	M	k	h	da	d	C	m	μ	n	p			
Mnożnik	109	106	103	10 ²	10^{1}	10 ⁻¹	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}			