$\delta X = X - X_0$	$X_0 \in \langle X - \Delta X, X \rangle$	$\langle +\Delta X \rangle \qquad \overline{T} = \frac{T_1 + T_2 + T_3 + T_3}{n}$		$X + \Delta X \rangle \qquad \overline{T} = \frac{T_1 + T_2 + T_2}{T_1 + T_2}$		$X_0 \in \langle X - \Delta X, X + \Delta X \rangle \overline{T} =$		$\dots + T_n$	$s_T = \sqrt{\frac{(T_1 - \bar{T})^2 + (T_2 - \bar{T})^2 + \dots + (T_n - \bar{T})^2}{n - 1}}$
Sīr =	$=\frac{S_T}{\sqrt{n}}$	1	$F = f(A_1, A_2, \dots, A_m)$		$\Delta F = \pm \sum_{i=1}^{m} \left \frac{\partial f(A_1, A_2, \dots, A_m)}{\partial A_i} \right \cdot \Delta A_i $				
	$F = const \cdot A^a$	$b \cdot B^b \cdot C^b$	c	2	$\Delta F = \pm F \cdot \left[\left a \cdot \frac{\Delta A}{A} \right + \left b \cdot \frac{\Delta B}{B} \right + \left c \cdot \frac{\Delta C}{C} \right + \dots \right]$				

$y(x,t) = A \cdot \sin\left[\omega \cdot \left(t - \frac{x}{v_{fali}}\right)\right] = A \cdot \sin\left[2 \cdot \pi \cdot \left(\frac{t}{T} - \frac{x}{T \cdot v_{fali}}\right)\right] = A \cdot \sin\left[2 \cdot \pi \cdot \left(\frac{t}{T} - \frac{x}{\lambda}\right)\right] = A \cdot \sin(\omega \cdot t - k \cdot x)$							
$\omega = \frac{2 \cdot \pi}{T}$		$k = \frac{2 \cdot \pi}{\lambda} \qquad \qquad \lambda =$		$v \cdot T$	$I = \frac{E}{S \cdot \Delta t} = \frac{P}{S}$		$I = \frac{P}{4 \cdot \pi \cdot R^2}$
$v_{fali} = \sqrt{\frac{F_n}{\mu}}$		$v_{fali} = \sqrt{\frac{B}{\rho}}$		$n \cdot \lambda$	$d = (2 \cdot n + 1)$	$\frac{\lambda}{2}$	$v = \lambda \cdot f$
$\frac{\sin(\alpha)}{\sin(\beta)} = \frac{v_{\alpha}}{v_{\beta}} = \frac{\lambda_{\alpha}}{\lambda_{\beta}} = c$	onst	$\frac{\nu_{\alpha}}{\lambda_{\alpha}} = \frac{\nu_{\beta}}{\lambda_{\beta}} = f$	$f = const$ $L = 10 \cdot \log\left(\frac{I}{I_0}\right)$ $f' = f \cdot \frac{v}{v}$		$f' = f \cdot \frac{v_{d\dot{z}} \pm v_{ob}}{v_{d\dot{z}} \mp v_{\dot{z}r}}$		

$\frac{\mathrm{d}n}{\mathrm{d}t} = -D \cdot S \cdot \frac{\mathrm{d}c}{\mathrm{d}x}$		$D = \frac{k \cdot \pi}{6 \cdot \pi}$	$\frac{\Delta T}{\Delta x^2} = 2 \cdot D \cdot t$			$P = \frac{D}{\mathrm{d}x}$	
$\frac{\mathrm{d}n}{\mathrm{d}t} = P \cdot S \cdot (c_1 - c_2)$	2)	$c_2 = \frac{c_0}{2} \cdot (1 - $	$e^{-C \cdot D \cdot t}$)	$C = \frac{2 \cdot A}{V \cdot \mathrm{d}x}$		$\ln\left(\frac{c_0}{c_0 - 2 \cdot c_2}\right) = C \cdot D \cdot t$	
$\pi = f \cdot c_m \cdot R \cdot T$	$\mu_i =$	$\left(\frac{\partial G_i}{\partial n_i}\right)_{T,p,n_j \text{dla} j \neq i}$	H = U	$+ p \cdot V$	$G = H - T \cdot d$	S	$F = U - T \cdot S$

$W = \sigma \cdot \Delta S \qquad \qquad \sigma = \frac{F}{l} \qquad \qquad \sigma = \frac{\rho \cdot V}{2 \cdot \pi}$	$\frac{g}{\cdot n} \qquad \frac{\sigma}{\sigma_0} = \frac{n_0 \cdot \rho}{n \cdot \rho_0}$	$\sigma = \frac{r \cdot h \cdot \rho \cdot g}{2 \cdot \cos(\alpha)}$	$\Delta p = \frac{2 \cdot \sigma}{R}$
--	--	--	---------------------------------------

$F = \eta \cdot S \cdot \frac{\Delta \nu}{\Delta x}$	$R = 6 \cdot \pi \cdot r \cdot v \cdot \eta$	$\Delta V = \frac{\pi \cdot r^4 \cdot \Delta t}{8 \cdot l \cdot \eta} \cdot \Delta p$	$\eta = \frac{2 \cdot r^2 \cdot g \cdot (\rho - \rho_c)}{9 \cdot v}$
$\eta_{ m wt}=rac{\eta}{\eta_0}-1$	$[\eta] = \lim_{c \to 0} \left(\frac{\eta_{w!}}{c}\right)$	$\frac{\eta}{\eta_0} = 1 + 2,5 \cdot \Phi$	$[\eta] = 2.5 \cdot \frac{N_A}{M} \cdot v_{cz}$
$r = \sqrt[3]{\frac{3 \cdot M}{10 \cdot \pi \cdot N_A} \cdot [\eta]}$	$\frac{\eta}{\eta_0} = \frac{t}{t_0} \cdot \frac{\rho}{\rho_0}$	$\frac{\rho}{\rho_0} = 1 + 0.23 \cdot c$	$\Phi = \frac{V_{sr}}{V_r}$

$E = E_{el} + E_{os}$	$_{sc} + E_{rot}$	$h \cdot \nu = E_2 - E_1 = \Delta E_{el} + \Delta E_{osc} + \Delta E_{rot}$		$\nu = E_2 - E_1 = \Delta E_{el} + \Delta E_{osc} + \Delta E_{rot} \qquad P = P_0 \cdot e^{-i}$		$-k \cdot d$	$k = a_{\lambda} \cdot c$
$\tau = \frac{P}{P_0}$	$\tau = \mathrm{e}^{-a_{\lambda} \cdot c \cdot d}$		$A = -\log(\tau)$	$A = a_{\lambda} \cdot \log \lambda$	$\log(e) \cdot c \cdot d$	ε	$a_{\lambda} = a_{\lambda} \cdot \log(e)$

$T = \frac{1}{f}$	$\omega = \frac{2 \cdot \pi}{T}$	$x(t) = A \cdot \sin(\omega \cdot t + \varphi)$		$v(t) = A \cdot \omega \cdot \cos(\omega \cdot t + \varphi)$		
a(t) = -A	$\cdot \omega^2 \cdot \sin(\omega \cdot t -$	$(-\varphi) = -\omega^2 \cdot x(t)$	$F_{wyp}(t) = m \cdot a(t) = -m \cdot A \cdot \omega^2 \cdot \sin(\omega \cdot t + \varphi) = -\underbrace{k}_{m \cdot \omega^2} \cdot x(t)$			
		F _w	$h_{yyp}(t) = -k \cdot x(t)$			

$\omega = \sqrt{\frac{k}{m}}$	$T = 2 \cdot \pi \cdot \sqrt{\frac{m}{k}}$	$T = 2 \cdot \pi \cdot \sqrt{\frac{\ell}{g}} \qquad \qquad T = 2 \cdot \pi \cdot \sqrt{\frac{m}{m \cdot r}}$			
$E_{Kinetyczna} = \frac{m \cdot v^2}{2} = \frac{m}{\frac{2}{2}}$	$\frac{1}{E_{KinMaks}} \cdot \cos^2(\omega \cdot t + \varphi)$	$E_{Potencjalna} = \frac{m}{\underbrace{2}_{E_{Pot Maks}}} \cdot A^2 \cdot \omega^2 \cdot \sin^2(\omega \cdot t + \varphi)$			
$A(t) = A \cdot e^{-\delta \cdot t}$	$\omega' = \sqrt{\frac{k}{m} - \delta^2}$	$\omega_{wym} = \omega$	$g = 4 \cdot \pi^2 \cdot \frac{\ell}{T^2}$		

$p = \frac{F}{S}$	$ \rho = \frac{m}{V} $	$\gamma = \frac{m \cdot g}{V}$	$p = ho \cdot g \cdot h$
$F_{parcia} = p \cdot S$	$S = S \cdot \rho \cdot g \cdot h$	$F_{Wyporu} = V_{Zanurzo}$	onej Części $\cdot ho_{Cieczy} \cdot g$

$$\begin{aligned} h &= \frac{\lambda}{c \cdot \rho} & \mathcal{C} = m \cdot c & \Phi = \Phi_K + \Phi_P + \Phi_T \\ \Phi_K &= \alpha \cdot S \cdot (T_c - T_o) & \Phi_R = \sigma \cdot \varepsilon \cdot S \cdot (T_c^4 - T_o^4) & \Phi_P = k \cdot S \cdot (p_s - p_o) \\ \Phi_T &= -\lambda \cdot S \cdot \frac{\Delta T}{\Delta x} & L(T) = L \cdot (1 + \alpha \cdot \Delta T) & \alpha = \frac{\Delta L}{L \cdot \Delta T} \end{aligned}$$

$p \cdot V = n \cdot R \cdot T$	$n = \frac{m}{M}$	$\Delta U = Q^{\downarrow} + W^{\downarrow}$	$W^{\downarrow}=-p\cdot\Delta V$
$Q = m \cdot c_{w^{\frac{1}{2}}} \cdot \Delta T$	$c_{ m wf} = rac{Q}{m\cdot\Delta T}$	$Q = m \cdot C_{faz}$	
$R = R_1 + R_2$	$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	$R = \frac{U}{I}$	$R = \rho \cdot \frac{l}{s}$
$C = \frac{s \cdot \varepsilon_0}{d}$	$C = \frac{Q}{V}$	$E = \frac{F}{q}$	$W = q \cdot U$
$F = q(v \times B)$	$F = B \cdot I \cdot l \cdot \sin \alpha$	$P = U \cdot I$	$W = U \cdot I \cdot t$
$I = \frac{q}{t}$	$E_k = \frac{mv^2}{2}$	$E_p = mgh$	$p_c = p_s + \frac{1}{2}\rho v^2 = const.$
$p = m \cdot v$	$\sum_{i} p_i = 0$	$\Delta E = W$	$S_1v_1 = S_2v_2 = const.$

Wartości wybranych stałych fizycznych:

Liczba Avogadro $N_A = 6,02 \cdot 10^{23} \frac{1}{\text{mol}}$
Stała gazowa $R = 8,31 \frac{J}{\text{mol·K}}$
Stała Boltzmanna $k_B = \frac{R}{N_A} = 1,38 \cdot 10^{-23} \frac{J}{K}$
Ładunek elektronu e = 1,60 \cdot 10^{-19}C
Masa spoczynkowa elektronu $m_{\rm e}=9,11\cdot10^{-31}{\rm kg}$
Stała Faradaya $F = e \cdot N_A = 96500 \frac{C}{mol}$
Przyspieszenie ziemskie g = 9,81 $\frac{\rm m}{\rm s^2}$
Podstawa logarytmu naturalnego e \approx 2,72
Przenikalność magnetyczna próżni $\mu_0 = 4 \cdot \pi \cdot 10^{-7} \frac{T \cdot m}{A}$
Przenikalność elektryczna próżni $\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{C^2}{N \cdot m^2}$

Pi $\pi\approx3,\!14$
Stała Plancka $h = 6,63 \cdot 10^{-34}$ J · s
Prędkość światła w próżni $c = 3,00 \cdot 10^8 \frac{\text{m}}{\text{s}}$
Prędkość dźwięku w powietrzu $v_d = 331 \frac{\text{m}}{\text{s}}$
Stała Stefana-Boltzmanna $\sigma=5,\!67\cdot10^{-8}\frac{\rm W}{\rm K^4\cdot m^2}$
Stała Wiena $b = 2,90 \cdot 10^{-3} \text{m} \cdot \text{K}$

Progowe natężenie dźwięku dla 1 kHz	$\dots 10^{-12} \text{ W/m}^2$
Progowe ciśnienie akustyczne dla 1 kHz	2 · 10 ⁻⁵ Pa
Elektronowolt 1 eV	$= 1,6 \cdot 10^{-19} \text{ J}$