$\delta X=X-X_{0}$	$X_{0} \in\langle X-\Delta X, X+\Delta X\rangle$	$\bar{T}=\frac{T_{1}+T_{2}+T_{3}+\ldots .+T_{n}}{n}$	$s_{T}=\sqrt{\frac{\left(T_{1}-\bar{T}\right)^{2}+\left(T_{2}-\bar{T}\right)^{2}+\cdots+\left(T_{n}-\bar{T}\right)^{2}}{n-1}}$
$s_{\bar{T}}=\frac{s_{T}}{\sqrt{n}}$	$F=f\left(A_{1}, A_{2}, \ldots, A_{m}\right)$	$\Delta F= \pm \sum_{i=1}^{m}\left\|\frac{\partial f\left(A_{1}, A_{2}, \ldots, A_{m}\right)}{\partial A_{i}}\right\| \cdot\left\|\Delta A_{i}\right\|$	
$F=\mathrm{const} \cdot A^{a} \cdot B^{b} \cdot C^{c} \cdots .$.	$\Delta F= \pm F \cdot\left[\left\|a \cdot \frac{\Delta A}{A}\right\|+\left\|b \cdot \frac{\Delta B}{B}\right\|+\left\|c \cdot \frac{\Delta C}{C}\right\|+\ldots\right]$		

$y(x, t)=A \cdot \sin \left[\omega \cdot\left(t-\frac{x}{v_{\text {fali }}}\right)\right]=A \cdot \sin \left[2 \cdot \pi \cdot\left(\frac{t}{T}-\frac{x}{T \cdot v_{\text {fali }}}\right)\right]=A \cdot \sin \left[2 \cdot \pi \cdot\left(\frac{t}{T}-\frac{x}{\lambda}\right)\right]=A \cdot \sin (\omega \cdot t-k \cdot x)$				
$\omega=\frac{2 \cdot \pi}{T}$	$k=\frac{2 \cdot \pi}{\lambda}$	$\lambda=v \cdot T$	$I=\frac{E}{S \cdot \Delta t}=\frac{P}{S}$	$I=\frac{P}{4 \cdot \pi \cdot R^{2}}$
$v_{\text {fali }}=\sqrt{\frac{F_{n}}{\mu}}$	$v_{\text {fali }}=\sqrt{\frac{B}{\rho}}$	$d=n \cdot \lambda$	$d=(2 \cdot n+1) \cdot \frac{\lambda}{2}$	$v=\lambda \cdot f$
$\frac{\sin (\alpha)}{\sin (\beta)}=\frac{v_{\alpha}}{v_{\beta}}=\frac{\lambda_{\alpha}}{\lambda_{\beta}}=$ const	$\frac{v_{\alpha}}{\lambda_{\alpha}}=\frac{v_{\beta}}{\lambda_{\beta}}=f=\mathrm{const}$	$L=10 \cdot \log \left(\frac{I}{I_{0}}\right)$		$f \cdot \frac{v_{d \dot{z}} \pm v_{o b}}{v_{d \dot{z}} \overline{\mathrm{f}} v_{\text {żr }}}$

$\frac{\mathrm{d} n}{\mathrm{~d} t}=-D \cdot S \cdot \frac{\mathrm{~d} c}{\mathrm{~d} x}$	$D=\frac{k \cdot T}{6 \cdot \pi \cdot r \cdot \eta}$	$\overline{\Delta x^{2}}=2 \cdot D \cdot t$	$P=\frac{D}{\mathrm{~d} x}$	
$\frac{\mathrm{~d} n}{\mathrm{~d} t}=P \cdot S \cdot\left(c_{1}-c_{2}\right)$	$c_{2}=\frac{c_{0}}{2} \cdot\left(1-e^{-C \cdot D \cdot t}\right)$	$C=\frac{2 \cdot A}{V \cdot \mathrm{~d} x}$	$\ln \left(\frac{c_{0}}{c_{0}-2 \cdot c_{2}}\right)=C \cdot D \cdot t$	
$\pi=f \cdot c_{m} \cdot R \cdot T$	$\mu_{i}=\left(\frac{\partial G_{i}}{\partial n_{i}}\right)_{T, p, n_{j} \text { dla } j \neq i}$	$H=U+p \cdot V$	$G=H-T \cdot S$	$F=U-T \cdot S$

$$
W=\sigma \cdot \Delta S
$$

$$
\sigma=\frac{F}{l} \quad \sigma=\frac{\rho \cdot V \cdot g}{2 \cdot \pi \cdot r \cdot n}
$$

$$
\frac{\sigma}{\sigma_{0}}=\frac{n_{0} \cdot \rho}{n \cdot \rho_{0}} \quad \sigma=\frac{r \cdot h \cdot \rho \cdot g}{2 \cdot \cos (\alpha)}
$$

$$
\Delta p=\frac{2 \cdot \sigma}{R}
$$

$F=\eta \cdot S \cdot \frac{\Delta v}{\Delta x}$	$R=6 \cdot \pi \cdot r \cdot v \cdot \eta$	$\Delta V=\frac{\pi \cdot r^{4} \cdot \Delta t}{8 \cdot l \cdot \eta} \cdot \Delta p$	$\eta=\frac{2 \cdot r^{2} \cdot g \cdot\left(\rho-\rho_{c}\right)}{9 \cdot v}$
$\eta_{w \nmid}=\frac{\eta}{\eta_{0}}-1$	$[\eta]=\lim _{c \rightarrow 0}\left(\frac{\eta_{w f}}{c}\right)$	$\frac{\eta}{\eta_{0}}=1+2,5 \cdot \Phi$	$[\eta]=2,5 \cdot \frac{N_{A}}{M} \cdot v_{c z}$
$r=\sqrt[3]{\frac{3 \cdot M}{10 \cdot \pi \cdot N_{A}} \cdot[\eta]}$	$\frac{\eta}{\eta_{0}}=\frac{t}{t_{0}} \cdot \frac{\rho}{\rho_{0}}$	$\frac{\rho}{\rho_{0}}=1+0,23 \cdot c$	$\Phi=\frac{V_{s r}}{V_{r}}$

| $\quad E=E_{e l}+E_{o s c}+E_{r o t}$ | $h \cdot v=E_{2}-E_{1}=\Delta E_{e l}+\Delta E_{o s c}+\Delta E_{r o t}$ | | $P=P_{0} \cdot e^{-k \cdot d}$ | $k=a_{\lambda} \cdot c$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\tau=\frac{P}{P_{0}}$ | $\tau=\mathrm{e}^{-a_{\lambda} \cdot c \cdot d}$ | $A=-\log (\tau)$ | $A=a_{\lambda} \cdot \log (\mathrm{e}) \cdot c \cdot d$ | $\varepsilon_{\lambda}=a_{\lambda} \cdot \log (\mathrm{e})$ |

\[

\]

$$
F_{w y p}(t)=-k \cdot x(t)
$$

$\omega=\sqrt{\frac{k}{m}}$	$T=2 \cdot \pi \cdot \sqrt{\frac{m}{k}}$	$T=2 \cdot \pi \cdot \sqrt{\frac{\ell}{g}}$	$T=2 \cdot \pi \cdot \sqrt{\frac{I}{m \cdot g} \cdot h}$
$E_{\text {Kinetyczna }}=\frac{m \cdot v^{2}}{2}=\underbrace{\frac{m}{2} \cdot A^{2} \cdot \omega^{2}}_{E_{\text {Kin Maks }}} \cdot \cos ^{2}(\omega \cdot t+\varphi)$	$E_{\text {Potencjalna }}=\frac{m}{\underbrace{2} \cdot A^{2} \cdot \omega^{2} \cdot \sin ^{2}(\omega \cdot t+\varphi)}$		
$A(t)=A \cdot e^{-\delta \cdot t}$	$\omega^{\prime}=\sqrt{\frac{k}{m}-\delta^{2}}$	$\omega_{\text {wym }}=\omega$	$g=4 \cdot \pi^{2} \cdot \frac{\ell}{T^{2}}$

$p=\frac{F}{S}$	$\rho=\frac{m}{V}$	$\gamma=\frac{m \cdot g}{V}$	$p=\rho \cdot g \cdot h$
$F_{\text {parcia }}=p \cdot S=S \cdot \rho \cdot g \cdot h$		$F_{\text {Wyporu }}=V_{\text {Zanurzonej Czę́ci }} \cdot \rho_{\text {Cieczy }} \cdot g$	

$h=\frac{\lambda}{c \cdot \rho}$	$C=m \cdot c$	$\Phi=\Phi_{K}+\Phi_{R}+\Phi_{P}+\Phi_{T}$
$\Phi_{K}=\alpha \cdot S \cdot\left(T_{c}-T_{o}\right)$	$\Phi_{R}=\sigma \cdot \varepsilon \cdot S \cdot\left(T_{c}^{4}-T_{o}^{4}\right)$	$\Phi \Phi_{P}=k \cdot S \cdot\left(p_{s}-p_{o}\right)$
$\Phi_{T}=-\lambda \cdot S \cdot \frac{\Delta T}{\Delta x}$	$L(T)=L \cdot(1+\alpha \cdot \Delta T)$	$\alpha=\frac{\Delta L}{L \cdot \Delta T}$

$p \cdot V=n \cdot R \cdot T$	$n=\frac{m}{M}$	$\Delta U=Q^{\downarrow}+W^{\downarrow}$	$W^{\downarrow}=-p \cdot \Delta V$
$Q=m \cdot c_{w ł} \cdot \Delta T$	$c_{\mathrm{w} \downarrow}=\frac{Q}{m \cdot \Delta T}$	$Q=m \cdot C_{f a z}$	
$R=R_{1}+R_{2}$	$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$	$R=\frac{U}{I}$	$R=\rho \cdot \frac{l}{s}$
$C=\frac{s \cdot \varepsilon_{0}}{d}$	$C=\frac{Q}{V}$	$E=\frac{F}{q}$	$W=q \cdot U$
$F=q(v \times B)$	$F=B \cdot I \cdot l \cdot \sin \alpha$	$E_{p}=m g h$	$W=U \cdot I \cdot t$
$I=\frac{q}{t}$	$E_{k}=\frac{m v^{2}}{2}$	$\Delta E=W$	$p_{c}=p_{s}+\frac{1}{2} \rho v^{2}=$ const.
$p=m \cdot v$	$\sum_{i} p_{i}=0$	$S_{1} v_{1}=S_{2} v_{2}=$ const.	

Wartości wybranych stałych fizycznych:
Liczba Avogadro

$$
N_{A}=6,02 \cdot 10^{23} \frac{1}{\mathrm{~mol}}
$$

Stała gazowa $R=8,31 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
Stała Boltzmanna $k_{B}=\frac{R}{N_{A}}=1,38 \cdot 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}$

Ładunek elektronu $e=1,60 \cdot 10^{-19} \mathrm{C}$

Masa spoczynkowa elektronu $m_{\mathrm{e}}=9,11 \cdot 10^{-31} \mathrm{~kg}$ Stała Faradaya \qquad $F=e \cdot N_{A}=96500 \frac{\mathrm{C}}{\mathrm{mol}}$
Przyspieszenie ziemskie \qquad $g=9,81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

Podstawa logarytmu naturalnego $e \approx 2,72$
Przenikalność magnetyczna próżni $. . \mu_{0}=4 \cdot \pi \cdot 10^{-7} \frac{\mathrm{~T} \cdot \mathrm{~m}}{\mathrm{~A}}$
Przenikalność elektryczna próżni .. $\varepsilon_{0}=8,85 \cdot 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \cdot \mathrm{~m}^{2}}$
Stała Plancka \qquad $h=6,63 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

Prędkość światła w próżni $c=3,00 \cdot 10^{8} \frac{\mathrm{~m}}{\mathrm{~s}}$
Prędkość dźwięku w powietrzu \qquad $v_{d}=331 \frac{\mathrm{~m}}{\mathrm{~s}}$
Stała Stefana-Boltzmanna $\sigma=5,67 \cdot 10^{-8} \frac{\mathrm{~W}}{\mathrm{~K}^{4} \cdot \mathrm{~m}^{2}}$ Stała Wiena \qquad $b=2,90 \cdot 10^{-3} \mathrm{~m} \cdot \mathrm{~K}$

Progowe natężenie dźwięku dla 1 kHz \qquad $10^{-12} \mathrm{~W} / \mathrm{m}^{2}$

Progowe ciśnienie akustyczne dla 1 kHz \qquad $.2 \cdot 10^{-5} \mathrm{~Pa}$ Elektronowolt \qquad $1 \mathrm{eV}=1,6 \cdot 10^{-19} \mathrm{~J}$

